Sampling with Bessel Functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1-D Sampling Using Nonuniform Samples and Bessel Functions

We develop the nth order Fourier-Bessel series expansion of 1-D functions in the interval (0,α). Hence we establish the sampling theorem for a function with α-bandlimited nth order Hankel transform. The latter statement implies that the function is also Fourier transform αbandlimited. The samples’ locations are given by the roots of nth order Bessel functions. In addition, the sampling distance...

متن کامل

Some Integrals Involving Bessel Functions Some Integrals Involving Bessel Functions

A number of new definite integrals involving Bessel functions are presented. These have been derived by finding new integral representations for the product of two Bessel functions of different order and argument in terms of the generalized hypergeometric function with subsequent reduction to special cases. Connection is made with Weber's second exponential integral and Laplace transforms of pr...

متن کامل

Noncommutative Bessel Symmetric Functions

The consideration of tensor products of 0-Hecke algebra modules leads to natural analogs of the Bessel J-functions in the algebra of noncommutative symmetric functions. This provides a simple explanation of various combinatorial properties of Bessel functions.

متن کامل

Univalence of Bessel Functions

In particular we shall first determine a radius of univalence for the normalized Bessel functions [7>(z)]1/" for values of v belonging to the region G defined by the inequalities 6{\v} >0, | arg »»| <7r/4. Then we shall determine the radius of univalence of the functions z1_"7,.(z) for values of v belonging to a subset of the closure of G. When v is real and positive we shall determine the exac...

متن کامل

Generalized Bessel functions for p-radial functions

Suppose that d ∈ N and p > 0. In this paper, we study the generalized Bessel functions for the surface {v ∈ Rd : |v|p = 1}, introduced by D.St.P. Richards. We derive a recurrence relation for these functions and utilize a series representation to relate them to the classical symmetric functions. These generalized Bessel functions are symmetric with respect to the action of the hyperoctahedral g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Clifford Algebras

سال: 2007

ISSN: 0188-7009,1661-4909

DOI: 10.1007/s00006-007-0046-7